Currents in Metric Spaces
نویسندگان
چکیده
We develop a theory of currents in metric spaces which extends the classical theory of Federer–Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in [20, 21], is to replace the duality with differential forms with the duality with (k+ 1)-ples (f, π1, . . . , πk) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is new even for currents in euclidean spaces, that the closure theorem and the boundary rectifiability theorem for integral currents hold in any complete metric space E. Moreover, we prove some existence results for a generalized Plateau problem in compact metric spaces and in some classes of Banach spaces, not necessarily finite dimensional. ∗on leave from ÚAM MFF UK, Mlynská dolina, 84215 Bratislava, Slovakia
منابع مشابه
Institute for Mathematical Physics Currents in Metric Spaces Currents in Metric Spaces
We develop a theory of currents in metric spaces which extends the classical theory of Federer{Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in 20, 21], is to replace the duality with diierential forms with the duality with (k + 1)-ples (f; 1; : : : ; k) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is new e...
متن کاملFlat Convergence for Integral Currents in Metric Spaces
It is well known that in compact local Lipschitz neighborhood retracts in Rn flat convergence for Euclidean integer rectifiable currents amounts just to weak convergence. The purpose of the present paper is to extend this result to integral currents in complete metric spaces admitting a local cone type inequality. This includes for example all Banach spaces and complete CAT(κ)-spaces, κ ∈ R. Th...
متن کاملPlateau’s problem for integral currents in locally non-compact metric spaces
The purpose of this article is to prove existence of mass minimizing integral currents with prescribed possibly non-compact boundary in all dual Banach spaces and furthermore in certain spaces without linear structure, such as injective metric spaces and Hadamard spaces. We furthermore prove a weak -compactness theorem for integral currents in dual spaces of separable Banach spaces. Our theorem...
متن کاملESI The Erwin Schr odinger
We develop a theory of currents in metric spaces which extends the classical theory of Federer{Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in 20, 21], is to replace the duality with diierential forms with the duality with (k + 1)-ples (f; 1; : : : ; k) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is new e...
متن کامل$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کامل